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        Introduction 

 World human population is expected to grow to 
9.3 billion in 2050, an increase of nearly 33 % 
from the current level of 7 billion (USA Census 
Bureau  2012 ; FAO  2009 ). 

 Most of this growth is forecast to take place 
in the developing countries. It is estimated that 
feeding a population of 9.3 billion people in 
2050 would require raising overall food produc-

tion by 70 % from the current levels. Foods 
derived from animal sources are expected to be 
in great demand due to their nutritive value, and 
increased  affl uence of people in developing 
countries. In particular, the global demand for 
poultry meat and eggs is expected to grow expo-
nentially over the next several decades. In the 
year 2011, global production of broiler meat 
stood at 80,420 Mt, of which 63,726 Mt (or 
79 %) was produced in the USA. Similarly, 
nearly one-half of the global turkey meat pro-
duction of 5,312 Mt was produced in the USA 
(USDA, Foreign Agricultural Service,   http://
w w w. fa s . u s d a . g ov / l ive s t o c k _ a r c . a s p     ) . 
Increasing global poultry production in the 
future would require signifi cant improvements 
in genetics, nutrition, and managerial practices, 
including reproduction. Some of the existing 
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challenges and future prospects for improving 
poultry production from the view of a reproduc-
tive biologist are discussed in this chapter.  

    Reproductive Dysfunction in Broiler 
Breeder Chickens 

 Approximately 8.5 billion broiler chickens are 
reared in the USA annually for meat produc-
tion. Broiler breeder chickens are genetically 
selected for faster growth, higher feed intake, 
and greater muscle yield in their progenies. Just 
like their progenies, the parental line of broiler 
breeder chickens also displays hyperphagia that 
leads to reproductive problems (Robinson et al. 
 2007 ). Consequently, broiler breeder hens have 
the poorest reproductive effi ciency of all com-
mercial avian species. Current management 
practices involve cumbersome and often impre-
cise feed restriction methods to limit body 
growth in an effort to increase egg production. 
Despite adopting laborious methods, egg pro-
duction remains suboptimal due to excessive 
follicular recruitment that often leads to inter-
nal or double (nonviable) ovulations. It is not 
clear, however, what factor(s) promotes this 
excessive follicular recruitment in the broiler 
breeder hen ovary. The following review covers 
some of the signifi cant research areas that hold 
promise for improving reproductive effi ciency 
in broiler breeder chickens. 

    Broiler Breeder Hens Have Excessive 
Visceral Adiposity and Multiple 
Ovarian Follicular Hierarchies 

 Broiler breeder female chickens are hyperphagic. 
When allowed unrestricted access to feed, they 
gain twice as much weight as feed-restricted 
chickens. A major part of this excess body weight 
is due to the increased deposition of visceral adi-
pose tissue (abdominal fat pad, mesenteric fat, 
and fat around visceral organs). Accumulation of 
excessive visceral adipose tissue due to unre-
stricted feeding, as seen in Fig.  2.1 , often leads to 
hypertrophy of adipocytes with excess triglycer-
ides. Coincidentally, the ovary of the ad libitum- fed 
broiler breeder hen also develops multiple follicu-
lar hierarchies. A normal ovary has a typical hier-
archy of 4–6 preovulatory follicles (F1–F4 in 
Fig.  2.2 ) that are greater than 10 mm in diameter. 
The largest follicle (F1) ovulates every 26–28 h 
and the preovulatory follicular hierarchy is main-
tained by sequential recruitment of pre- 
hierarchical follicles. However, in broiler breeder 
hens that had unrestricted access to feed, the nor-
mal follicular hierarchy is disrupted by selection 
and growth of more than one follicle resulting in 
multiple hierarchy, multiple ovulations, and inter-
nal ovulations. This is one of the main reasons for 
poor reproductive effi ciency of broiler breeder 
hens. As in females, male broiler breeder chick-
ens that are fed ad libitum were found to have 
reduced duration of fertility, possibly contributing 

  Fig. 2.1    Photographs of a part of small intestine in situ in 
a broiler breeder hen (18 weeks-old) showing excessive 
mesenteric adipose tissue accumulation due to unre-

stricted feeding ( right ) compared to lesser level of adipose 
tissue following restricted feeding ( left ) (Ramachandran, 
unpublished data)       
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  Fig. 2.2    Ovarian follicular hierarchy in leghorn ( left ) and 
broiler breeder hen ( right ). F1–F5 denote preovulatory 
follicles. Note double hierarchy of preovulatory follicles 

in broiler breeder hen ovary (picture courtesy: Dr. Alan 
Johnson, Department of Animal Science, Pennsylvania 
State University)       

to a reduced fertility in artifi cially inseminated 
and naturally mated fl ocks (Goerzen et al.  1996 ).

        Gonadotropins 

 Gonadotropins are critical for ovarian follicular 
development as well as egg production, initiation, 
and maintenance. Several studies have attempted 
to determine if gonadotropin secretion was altered 
in broiler breeder chickens in response to feed 
restriction. One of the studies suggests that plasma 
LH and FSH concentrations in Shaver Starbro 
broiler breeder pullets were signifi cantly higher in 
ad libitum-fed chickens compared with feed-
restricted hens (Renema et al.  1999 ). Similarly, ad 
libitum-fed broiler breeder pullets showed the 
highest responsiveness to ovarian hormones and 
to cLHRH-I in releasing FSH prior to sexual 
maturity compared with feed-restricted pullets, 
suggesting that feeding regimen can modify pitu-
itary sensitivity to cLHRH-I and to gonadal hor-
mones (Bruggeman et al.  1998b ). Feed restriction 
of Hybro G broiler breeder pullets between 7 and 
15 weeks-of-age followed by ad libitum feeding 
led to improved reproductive performance, 
although pituitary and plasma LH and FSH con-
centrations, and median eminence levels of 
cLHRH-I, were not different compared with pul-
lets fed ad libitum (Bruggeman et al.  1998a ). 
This raises the possibility that FSH responsive-

ness in the pre-hierarchical follicles is increased 
in response to overfeeding in broiler breeder 
chickens. FSHR were found to be expressed in 
both theca and granulosa cells of the developing 
ovarian follicle (You et al.  1996 ) but altered FSH 
signaling in broiler breeder ovaries in response to 
overfeeding has not been investigated. While it is 
unequivocally clear that ad libitum feeding 
reduces reproductive effi ciency in broiler breeder 
hens, the underlying mechanisms involving hypo-
thalamic–pituitary–ovarian axis and sensitivity to 
FSH at the ovarian level remain to be elucidated.  

    Metabolic Hormones 

 The root-cause(s) for the ovarian dysfunction in 
broiler breeder hens most likely lies within the 
ovarian follicles and visceral adipose tissue that 
tend to accumulate excessive triacylglycerol and 
fatty acids as a result of overeating (Chen et al. 
 2006 ). There are evidences to suggest that ad 
libitum-fed broiler breeder hens suffer with lipo-
toxicity leading to upregulation of proinfl amma-
tory cytokines expression in the liver and an 
increase in circulating levels of ceramide and 
sphingomyelin (Pan et al.  2012 ). In another 
study, ad libitum feeding of broiler breeder hens 
was associated with an increased apoptosis of 
granulosa cell and suppressed Akt activation 
(Xie et al.  2012 ). Furthermore, treatment of 
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granulosa cells with palmitic acid, a saturated 
fatty acid, was found to activate apoptotic 
machinery in the granulosa cells. Leptin is an 
adipocytokine hormone that affects various    meta-
bolic and reproductive functions mediated 
through the hypothalamic–pituitary–gonadal axis 
in mammals (Barash et al.  1996 ; Bluher and 
Mantzoros  2007 ). Although existence of leptin in 
avian species is debatable (Sharp et al.  2008 ; 
Simon et al.  2009 ), leptin receptor is unequivo-
cally expressed in various tissues including the 
thecal layer of the ovarian follicles in chickens 
(Cassy et al.  2004 ; Ohkubo et al.  2000 ). Injection 
of leptin-like substance to fasted laying hens was 
found to delay cessation of egg laying, attenuate 
regression of yellow hierarchical follicles, altered 
ovarian steroidogenesis (Paczoska-Eliasiewicz 
et al.  2003 ). Discovery of chicken leptin or 
endogenous ligand(s) for leptin receptor will 
improve our understanding on the role of leptin 
in ovarian dysfunction in broiler breeder hens. 

 The role of IGF on excessive adipose tissue 
deposition and ovarian dysfunction in broiler 
breeder hens has been investigated. Systemic lev-
els of IGF-I and IGF-II were found to be elevated 
in broiler breeder pullets in response to feed 
restriction (Bruggeman et al.  1997 ; Hocking 
et al.  1994 ). In another study, the proportion of 
carcass fat in ad libitum-fed chickens was found 
to be positively correlated with plasma glucagon, 
IGF-II, and 17β-estradiol but negatively corre-
lated with plasma insulin, insulin/glucagon ratio, 
IGF-I, thyroxine, and triiodothyronine suggest-
ing that ad libitum feeding favors fat deposition 
(Sun et al.  2006 ). Consequently, excessive accu-
mulation of carcass fat is likely to be detrimental 
to overall metabolism and in particular, to the 
reproductive system. Treatment of granulosa 
cells isolated from F1, F2, and F3 preovulatory 
follicles of broiler breeder hens with IGF-I alone 
or in combination with LH signifi cantly increased 
granulosa cell proliferation in birds fed ad libi-
tum more than feed-restricted hens suggesting 
that IGF-I may play an important role in acceler-
ating the rate of maturation of follicles 
(Onagbesan et al.  1999 ). The precise role of IGF, 
GH, or insulin on ovarian follicular development 
in broiler breeder hen ovaries remains to be 
elucidated.  

    Inhibin/Activin 

 Inhibin, a hormone secreted predominantly by 
the granulosa cells of the ovarian follicle, acts as 
a negative feedback regulator of pituitary FSH 
secretion (Johnson et al.  1993 ; Vanmontfort et al. 
 1992 ,  1995 ). Expression of the inhibin α-subunit 
and inhibin/activin βA and βB subunits, as well 
the activin type II receptor have been documented 
in the developing follicles of broiler breeder hen 
ovaries suggesting a paracrine role for inhibin 
and activin within the ovary (Slappey and Davis 
 2003 ). Plasma inhibin levels were negatively cor-
related with FSH and positively correlated with 
progesterone levels in female chickens (Lovell 
et al.  2001 ; Vanmontfort et al.  1992 ). A practical 
application exists in modifying inhibin action to 
improve egg production in chickens. Active 
immunization of chickens against inhibin in 
broiler breeder hens was found to increase cumu-
lative number of eggs produced by 9.5 % at the 
end of week 40 (Satterlee et al.  2002 ). 
Immunoneutralization of inhibin in chickens is 
likely to control the entry of ovarian follicles into 
preovulatory hierarchy (Lovell et al.  2001 ). 
Further studies are required to determine whether 
inhibin signaling can be altered in commercial 
settings to improve egg reproduction effi ciency.  

    Anti-Müllerian Hormone 

 Anti-Müllerian hormone is predominantly 
secreted by the granulosa cells of the ovarian fol-
licle in adult female chickens (Wojtusik and 
Johnson  2012 ). Recently, a possible role for 
AMH in excessive follicular recruitment in 
broiler breeder hens has been reported. As 
expected, AMH gene expression was found to be 
signifi cantly higher in broiler breeder hen ova-
ries compared to Leghorn chicken ovaries 
(Johnson et al.  2009 ). Similarly, AMH gene 
expression was higher in the ovaries of fully fed 
broiler breeder hens compared with feed-
restricted hens. AMH was postulated to enhance 
granulosa cell proliferation in an autocrine or 
paracrine mechanism but excessive AMH is 
likely to inhibit follicle development (Johnson 
et al.  2009 ). The ovarian AMH gene expression 
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appears to be susceptible to vitamin D levels 
since a dose- dependent decrease in AMH mRNA 
levels was detected to vitamin D treatment 
(Wojtusik and Johnson  2012 ). Increased serum 
levels of AMH are associated with polycystic 
ovarian syndrome in women (Cook et al.  2002 ), 
a condition that resembles excessive follicular 
recruitment as occurring in broiler breeder hens 
that are fed ad libitum. At the present time, 
methods to quantify circulating levels of AMH 
in chickens are not available and therefore, a cor-
relation between plasma AMH levels and egg 
production are not known. Future studies are 
required to determine if the manipulation of 
ovarian AMH levels leads to normalizing ovar-
ian follicular hierarchy and higher egg produc-
tion in broiler breeder hens.   

    Artifi cial Insemination 

 Comprehensive reviews on the history, methods, 
and challenges of AI in commercially important 
avian species can be found elsewhere (Blesbois 
 2007 ; Donoghue and Wishart  2000 ; Long  2006 ). 
AI technology is critical to turkey meat produc-
tion as AI is almost exclusively used for turkey 
breeding. This is due to a disparity in the sizes of 
toms and hens as toms often exceed 33 kg in 
body weight while the hens are only 9 kg thus 
rendering mating challenging (Donoghue and 
Wishart  2000 ). In contrast, AI is not commonly 
used in chickens as broiler breeder hens are typi-
cally reared in fl oor pens instead of cages and due 
to low fertility of cryopreserved chicken semen 
(Donoghue and Wishart  2000 ). However, AI may 
become essential and practically relevant if future 
genetic selection of broilers favor a body confor-
mation that limits physical mating. AI technology 
in turkeys utilizes fresh liquid semen (Donoghue 
and Wishart  2000 ) as storage of liquid semen 
greater than 6–24 h greatly reduces fertility. Poor 
fertilizing ability of the frozen/thawed avian 
spermatozoa can be attributed to several factors 
including greater sensitivity to the freezing/thaw-
ing process, deleterious effects of the cryoprotec-
tant on survival, and the ability to withstand 
longer storage/selection in the SST of the female 
reproductive tract. 

 Recent studies have focused on mitochondrial 
function (Froman and Feltmann  2010 ) and the 
composition of the plasma membrane (Long 
 2006 ) with a view to develop cryopreservation 
methods that maintain the integrity of spermato-
zoa upon freezing/thawing and longevity once 
inside the SST. Mitochondria provide energy for 
sperm mobility and survival in the female repro-
ductive tract and as such, conservation of mito-
chondrial integrity and function are critical for 
successful sperm cryopreservation. The function 
of chicken spermatozoa mitochondria can be 
temporarily inactivated using a calcium ion che-
lator prior to cooling to 10 °C and can be reacti-
vated within a 5-h period (Froman and Feltmann 
 2010 ). In this study, a fertility rate of 88 % was 
achieved when the spermatozoa stored for 3 h 
were reactivated and used for insemination. 
A mass spectrometric analysis of proteins 
extracted from chicken spermatozoa revealed 
that expression levels of proteins related to ATP 
metabolism and glycolysis differ in high- versus 
low-sperm- mobility New Hampshire chicken 
lines (Froman et al.  2011 ). This suggests that 
mitochondrial function and energy levels are crit-
ical for sperm mobility. 

 Carbohydrates on the spermatozoa plasma 
membrane are found to be signifi cantly altered 
during cryopreservation, and the degree of such 
modifi cation was infl uenced by the type of cryo-
protectant and freezing–thawing rates (Pelaez 
et al.  2011 ). In this regard, the type of cryopro-
tectant and freezing process was also found to 
alter the ability of chicken spermatozoa to 
undergo acrosome reaction (Moce et al.  2010 ). 
Fluidity of the avian spermatozoa plasma mem-
brane was found to be affected with a signifi cant 
decrease in cholesterol/phospholipid ratio fol-
lowing cryopreservation (Blesbois et al.  2005 ). 
Membrane fluidity is also one of the predictors 
for the success rate of semen cryopreservation 
in the chicken (Blesbois et al.  2008 ). 
Cryopreservation of spermatozoa of turkeys 
and sandhill cranes ( Grus canadensis ), using 
dimethylacetamine as the cryoprotectant 
resulted in greater viability for the frozen/
thawed crane semen compared with turkey semen 
emphasizing the need for optimization of proto-
col suitable for each species (Blanco et al.  2012 ). 
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More studies are required to develop an appropriate 
cryopreservation method taking into consider-
ation the anatomy and physiology unique to 
avian spermatozoa.  

    Sex Selection 

 Male chicks in egg producing fl ocks are not useful 
for the egg production and therefore, approxi-
mately, one-half of the chicks hatched in the 
poultry egg industry are typically culled. This 
represents an enormous waste of resources that 
were used in breeding and rearing parent chickens, 
fertile egg handling and hatching of eggs. Unlike 
mammals, sex in avian species is determined by 
the female and favoring female offspring would 
provide tremendous cost-saving to the poultry 
egg industry. Despite the commercial importance 
of sex selection to the poultry industry, there are 
only a few studies that have investigated the pos-
sibility of altering the sex ratio. Sex determina-
tion in avian species occurs during the fi rst 
meiotic division that typically happens 2–4 h 
before ovulation (Olson and Fraps  1950 ). Among 
various factors co-incident during this period, a 
dramatic surge in circulating progesterone levels, 
predominantly emerging from the preovulatory 
follicles, is highly critical for the induction of 
ovulation. Using commercial Leghorn chickens, 
Correa et al. attempted to further elevate circulat-
ing progesterone levels during the critical win-
dow of sex determination (Correa et al.  2005 ). In 
this study, administering progesterone 2 mg (high 
dose) or 0.25 mg (low dose) to White Leghorn 
hens (Babcock B300 strain) 4 h prior to the end 
of the light cycle resulted in far fewer males 
(25 %) from hens treated with high dose of pro-
gesterone compared with the number of males 
from low dose progesterone or sesame oil-treated 
hens (61–63 %). While this study confi rms the 
proof-of-principle that progesterone can affect 
sex ratio in the fi rst egg, more research needs to 
be done to determine the effect of progesterone 
on sex ratio and its impact on egg production effi -
ciency over a longer time period. Two recent 
studies adopted a similar approach of elevating 
circulating testosterone (Pinson et al.  2011b ) or 

corticosterone (Pinson et al.  2011a ) levels in 
White Leghorn hens (Hyline strain) during the 
predicted window of sex determination. A single 
dose of testosterone or corticosterone was admin-
istered to hens 5 h prior to the predicted time of 
ovulation and sex of the resultant offspring was 
determined. Interestingly, testosterone treatment 
resulted in a signifi cantly higher proportion of 
male chicks compared to the control (Pinson 
et al.  2011b ). Similar to testosterone, corticoste-
rone treatment resulted in over 80 % of the chicks 
being male compared to only 40 % in untreated 
control hens (Pinson et al.  2011a ). Based on the 
foregoing, altering sex ratio and hatching more 
females in the commercial poultry egg industry 
seems plausible in the future. It is, however, 
important that the overall egg production 
efficiency is not compromised while we attempt 
sex selection. Future studies should focus on 
using non-hormonal feed supplements that will 
accomplish sustained sex selection.  

    Transgenic Chickens 

 Modifying the chicken genome through trans-
genic technology has tremendous potential for 
imparting disease resistance and for expression of 
novel compounds in meat and eggs. Development 
of tools used in transgenic technology will also 
facilitate conservation and long- term preserva-
tion of PGC and embryonic and stem cells. 
Comprehensive reviews of various methods used 
to create transgenic chicken can be found else-
where (Han  2009 ; Mozdziak and Petitte  2004 ; 
Park and Han  2012a ; Petitte et al.  2004 ). 
Replication incompetent retroviral vectors includ-
ing lentiviral vectors have been used for integrat-
ing transgenes into the chicken genome. Using 
this technique, several elegant studies have dem-
onstrated the stable integration, germ line trans-
mission, and expression of transgenes in 
chickens. Transduction of transgene constructs 
was typically achieved by infecting blastodermal 
cells or PGC derived from embryonic gonads or 
embryonic blood circulation with retroviral vec-
tors (Harvey et al.  2002 ; Kamihira et al.  2005 ; 
Lillico et al.  2007 ; McGrew et al.  2004 ; Scott and 
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Lois  2006 ). Using lentiviral vector, a novel strategy 
to develop chickens that are genetically resistant 
to avian infl uenza was described (Ding et al. 
 2005 ). In this study, transgenic chickens were cre-
ated overexpressing a short-hairpin RNA driven 
by the U6 promoter that inhibits and blocks infl u-
enza virus polymerase and prevents virus propa-
gation. Although viral methods of creating 
transgenic chickens are feasible, such methods 
would render the transgenic chicken unsuitable 
for agriculture use. To overcome this disadvan-
tage, recent studies have used DNA transposons 
to integrate transgenes into the chicken genome. 
PiggyBac, a DNA transposon isolated from the 
cabbage looper moth  Trichoplusia ni  (Cary et al. 
 1989 ), has been widely used for creating genetic 
modifi cations in mice (Ding et al.  2005 ) and in 
chicken embryos (Lu et al.  2009 ). Recently, trans-
genic chickens were successfully produced by 
microinjecting DNA constructs encoding GFP 
and piggyBac transposase into the sub-germinal 
cavity of newly laid eggs (Liu et al.  2012 ). Using 
non-virally transfected gonadal PGC with GFP 
and piggyBac DNA elements, transgenic chick-
ens overexpressing GFP were created at a very 
high rate of transgene integration (437 transgenic 
chickens created out of 459 total hatched chicks; 
Park and Han  2012b ). Similarly, piggyBac or 
Tol2, another transposon isolated from the medaka 
fi sh genome   , was used to integrate transgene into 
PGC derived from embryonic blood that was then 
utilized to develop transgenic chickens 
(Macdonald et al.  2012 ). Taken together, non-
viral methods for creating transgenic chickens 
offer tremendous potential for improving nutritive 
value of poultry meat or egg and for imparting 
disease resistance to chickens.  

    Conclusion 

 In conclusion, there is tremendous potential for 
improving the reproductive effi ciency of broiler 
breeders and to help meet the increasing global 
demand for poultry meat. Understanding the role 
of hormones in ovarian follicular recruitment and 
ovulation is critical for improving reproductive 
effi ciency. Selecting for female chicks in the egg 

production industry will help to conserve 
resources and lower costs. Some of the emerging 
technologies for cryopreservation of semen and 
PGC are likely to improve poultry production 
effi ciency. Successful development of transgenic 
chickens that selectively overexpress certain 
microRNA and enzymes can prevent disease epi-
demics and disease-free fl ocks to allow uninter-
rupted food production.     
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